Capítulo 9

Técnicas de esparsidade

Exercícios

(1) (2,0) Considere a matriz esparsa abaixo armazenada de forma compacta segundo o esquema de Knuth.

	1	2	3	4	_
${f A}=$		6			1
	9	4		7	2
	5				3
		2		8	4

Posição	1	2	3	4	5	6	7	
AN	6	9	4	7	5	2	8	elementos não nulos
\mathbf{I}_{a}	1	2	2	2	3	4	4	linha
J	2	1	2	4	1	2	4	coluna
NR	0	3	4	0	0	7	0	posição do próximo elemento na linha
NC	3	5	6	7	0	0	0	posição do próximo elemento na coluna
$_{ m JR}$	1	2	5	6				apontador de início de linha
$_{ m JC}$	2	1	0	4				apontador de início de coluna

Deseja-se realizar a seguinte operação:

$$z = Ay$$

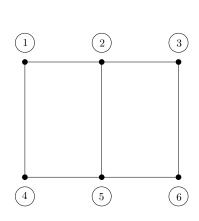
em que:

$$\boldsymbol{y}^T = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$$

Escreva uma rotina que faça a operação desejada, fornecendo o vetor z. Apresente detalhadamente os passos executados pela rotina até o resultado final.

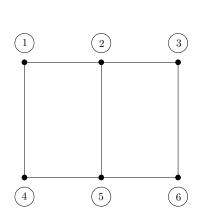
- (2) Considere novamente a matriz A do exercício (1).
 - (a) (1,0) Armazene a matriz segundo o esquema RR(C)O.
 - (b) (1,0) Repita o exercício anterior para o novo esquema de armazenamento compacto.

(3) Considere a rede abaixo e sua respectiva matriz admitância nodal.



	1	2	3	4	5	6	
	×	×		×			1
	×	×	×		×		2
$\mathbf{Y} =$		×	×			×	3
	×			×	×		4
		×		×	×	×	5
			×		×	×	6

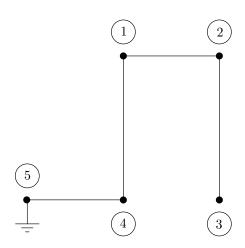
- (a) (1,0) Verifique que a eliminação de Gauss para Y resulta no aparecimento de 8 fill-ins.
- (b) (1,0) Considere agora que as linhas e colunas da matriz $\mathbf Y$ sejam reordenadas, resultando em:



	1	3	4	2	5	6	
	×		×	×			1
		×		×		×	3
	×		×		×		4
$\mathbf{Y} =$	×	×		×	×		2
			×	×	×	×	5
		×			×	×	6

Verifique que o processo de eliminação de Gauss agora provoca o aparecimento de apenas 4 fill-ins.

(4) Considere a rede a seguir e sua respectiva matriz admitância nodal.



	1	2	3	4	_
	20	-10		-10	1
3.7	-10	20	-10		2
$\mathbf{Y} =$		-10	10		3
	-10			15	4

O vetor das correntes nodais é:

$$\boldsymbol{I} = \begin{bmatrix} 0.5 & 0.1 & 0.1 & 4.0 \end{bmatrix}^T$$

- (a) (1,0) Obtenha as matrizes L, D e U resultantes da decomposição de Y.
- (b) (1,0) Obtenha as tensões nodais utilizando as substituições forward and back e a solução direta por:

$$V = (\mathbf{Y})^{-1} I$$

(c) (2,0) Reordene as linhas e colunas de Y de forma que sua fatoração não provoque o aparecimento de fill-ins.