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Power Quality Data Analytics (Power Disturbance Analytics)

Power quality data analytics (or simply Power Disturbance Analytics) is the discipline
specialized in collecting measurement-based power system data, extracting information from
it, and applying the findings to solve several power system problems such as:

v Power quality

v' Power system protection Walmir Freitas:
v" One of the Working Group founders
v Equipment condition monitoring v’ Chair: 2018-2020
v" Vice-chair: 2016-2018
v’ System condition monitoring Y’ Secretary: 2013-2016
v"  Received, as chair, the IEEE PES T&D Committee
/ Active risk_ba Sed asset ma nagement Award for Outstanding Technical Report - 2020

|IEEE/PES has recognized the relevance of this emerging area by establishing the Working
Group on Power Quality Data Analytics, which reports to the IEEE/PES Power Quality
Subcommittee (active since 2013)

Adapted from: IEEE Working Group on Power Quality Data Analytics (http://grouper.ieee.org/groups/td/pg/data/)



Power Disturbance Data Analytics: components
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Data science and data analytics

Data science is an interdisciplinary field that uses scientific methods, processes, algorithms and
systems to extract knowledge (information) from noisy, structured and unstructured data, and
apply it to a broad range of domains. Data science is related to data mining, machine learning,
big data, computational statistics and analytics (Adapted from Wikipedia)

Data Science

artificial intelligence data

visualization

| /\f Data analytics : 8 : 8

data

isti . storage
statistics data mining g

machine learning

risk-based methods optimization pattern recognition




Potential data sources

« AMI:E, P, Q,Vand | data (billing and demand monitoring)
 SCADA: 60 Hz magnitude (P, Q, V and |) data

* PMU: voltage and current phasors

 PQ monitors: rms and event-triggered waveform data

* Waveform measurement units (WMU): gapless voltage and current waveforms
(synchronized or unsynchronized)

* Other potential data sources:
v’ Modern relays — mission critical, hard to access data
v’ Digital fault recorders — specialized for fault recording

v’ Condition monitors — specialized/customized devices



Potential applications

Many others have not Power Disturbance Analytics
been envisioned yet! . : .
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Sample of potential applications

v’ Potential Applications (Smart Meter — low resolution data):
= Automated management of GIS/asset and other related databases (BDGD)
= Non-technical loss detection and location
" Technical loss management and evaluation
" Fault location
" Load modeling
= Customer load disaggregation
"= DER hosting capacity
v’ Potential Applications (Power Quality Meter — high resolution data):
= Resonance detection and mitigation (wind and solar parks)
= Fault anticipation

= Detection and location of high impedance faults



Automated management of GIS (BDGD) and others related databases

Issue: Utilities GIS/Assets database presents errors and inconsistencies due to:

v/ wrong data registration

v’ absence of data or update

v’ Line/transformer parameter variations due to weather conditions and equipment aging
v manual procedures for database update from field crew

Relevance: these databases are the core for:

v’ technical decisions

v economic decisions

v’ regulatory decisions

Idea: Combine customer smart meter data and data analytics to automatically correct:
v MV and LV system topology

v’ line and transformer parameters

v’ customers phase connection

v status of switches

v’ regulators/compensators settings and parameters



GIS automated correction (BDGD): LV systems

Customer Bo
R,T
Van1 = Vanz = [1 _IR1T IX1T IRZT —IXZT] X, T\

A
v’ system topology R e R,"
_ Mv B 7
v’ customers phase connection  system
C R1: ~ By — (B2 or B3) = Raq1 — (Rap1 07 Rge1)
v line parameters MMM | — X1~ Bs — (Bs or Be) ~ Xaa1 — (Xap1 07 X1 )

Issue: how to correct

S |0 ||

- Ry1 = (B2 or f3) = Ryn1 — Rama

Idea: use multiple linear regression

and data from customers smart line parameters
meters:
/ Phase identification: highest R%-y
Step 1 ) Meter connection: R, = 1 connection correct
R?c\ < 1 connection incorrect
@ Phase identification: highest R%,
/ \ / \ Step 2 >» | Meter connection: R’y = 1 connection correct
. :] :] R?\ < 1 connection incorrect
000 Rl R2 000 000 R4 RS 000
] . St ep 3 Phase identification: highest R*.
Topology is built from the bottom (customers) up 3> Meter connection: R%q = | connection correct

(transformer) approach to the transformer, by pairing Rcy < 1 connection incorrect

meters (real meters and virtual meters)
system topology and customer phasing

Source: V. C. Cunha, W. Freitas, F. C. L. Trindade, and S. Santoso, "Automated determination of topology and line parameters in low voltage systems using smart meters measurements," IEEE Transactions on Smart Grid, vol. 11, pp.
5028-5038, 2020 - © IEEE 2020



GIS automated correction (BDGD): LV systems

Real case: MV/LV systems: 2,175 buses; 2,000+ customers (87% residential); 76 MV/LV transformers

Low resolution:

v" Metering error: 1.0%

v" Measurement desynchronization: 10 sec
v 30 days of sample size

—— Estimated LV System ngh resolution
MV System .
s+ Private MV/LV Transformer v Metering error: 0.2%
ﬁ v v" Measurement desynchronization: 0 sec
5 Suwtomer v' 30 days of sample size
Topology and phasing Line parameters

Metric High-Precision Scenario (%) ||Low-Precision Scenario (%) % 122 % 128 i
Resolution (min) 15 30 60 30 60 E o .
Branch 92 92 91 48 58 5 40 5 40|
Line length 87 88 87 41 49 £ 20 £ 20|
Phasing 100 100 100 100 100 100 Z 0 2 ok

-0.025 0.000 0.025 -0.05 0.00 0.05 0.10 0.15
Resistance error (Q) !\ /Y Reactance error (Q)
High success rate

Line parameters successfully estimated (more than 90%

PhaSing estimation still has hlgh success rate of the parameters estimated accurate|y)

Source: V. C. Cunha, W. Freitas, F. C. L. Trindade, and S. Santoso, "Automated determination of topology and line parameters in low voltage systems using smart meters measurements," IEEE Transactions on Smart Grid, vol. 11, pp.
5028-5038, 2020 - © IEEE 2020



GIS correction: tap position of service (MV/LV) transformers and status of switches

Issue: Utilities GIS Database presents errors, f Obﬁ?ier;inf:rgeﬁter \
missing data, and inconsistencies on MV
systems regarding to: Execute State Estimation Distribution

Transformers Tap
Estimation
(Single-time Evaluation)

Yes

v
| Initialize Time-series
Evaluation

v’ Tap position of service transformers (MV/LV
transformers)

v’ Status of switches

ldea: Combine customer smart meter data and

N

a generalized state estimation formulation to |
. . - ) Increase Time

No

No AV < tol, Yes : Status of Switches

d All Time Steps . .
A6 intole? Evaluated? ) ESt_Imatlon .
(Time-series Evaluation)
Yes
Identify error Yes NS lim
\ based on ;Y. ! /
No"

Source: V. C. Cunha, W. Freitas, and S. Santoso, "Determination of tap position of transformers and status of switches in distribution systems using a generalized state estimator," submitted to IEEE Transactions on Power Systems



GIS correction: tap position of service (MV/LV) transformers and status of switches

Real case: MV/LV system with 5,000+ customers (87% residential) and 190 MV/LV transformers

B Substation
Bus/Switch|Phase| +¥ | ry | ¥ | ry | Iteration \ |\ swianoren
2794 C 1252 | 12.56 [-12.65 - 1 O — 7
52 a | 022 | 507 - i > ’y
S3 b - - 8.59 | -0.19 3 ¢
S1 C - - |-001]-153 4 2
3
2 F 0.15
1 ° o ®
Zu_(13:%#%#?f##@##%##f#i%%?%f%f g ot}
:i — . . | | | | | | w 0.05 | I '_—|__| & ,——|_—|
0 3 6 9 12 15 18 21 0 0.00 |
time (h) I_—l—_l I__!__I —— I__!__I
Meter Error Gross Error Switch Error Multiple Errors
Status of switches: 100% accurate — MV/LV transformer tap: 100% accurate
24 hours of operation The method is robust against:

v' Meter Errors (precision class and clock
desynchronization of meters)
Source: V. C. Cunha, W. Freitas, and S. Santoso, "Determination of tap position of transformers and status of \/ GrOSS Errors (e,g_’ incorrect power measurements)

switches in distribution systems using a generalized state estimator," submitted to IEEE Transactions on Power

Systems v Switch Errors (incorrect status of switches)



GIS correction: estimation of physical status and control settings of voltage regulators and capacitor banks

Issue: Control settings of voltage regulators and capacitor banks are constantly updated on field,
but this information is often not updated on the database

Idea: Combine customer smart meter data and a generalized state estimation formulation to
estimate the physical status of capacitor banks and voltage regulators, and the control settings of
this equipment

Voltage regulator: what is to be estimated Capacitor bank: what is to be estimated
Control settings: Control mode: Control settings:
V' Vsup (V) v’ reactive power v' Qon
V' Vipe (V) v power factor V' Qoft
/ .
v Vier V) v time Operation period (status):
V, v B (V) current v ON
Q v’ OFF
Vupper L
Vref/"v/_g\_/\_\/-\_/B
\ |
i s
t fo ter ¢

Source: V. C. Cunha, Integration of new Methods into Distribution Management Systems in the Presence of
Distributed Energy Resources and Smart Meters, Ph.D. Dissertation, UNICAMP, 2022



GIS correction: estimation of physical status and control settings of voltage regulators and capacitor banks

Real case 1: Why estimate the control settings of voltage regulators?
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GIS correction: estimation of physical status and control settings of voltage regulators and capacitor banks

Real case: MV/LV system with 5,000+ customers (87% residential) and 190 MV/LV transformers

B Substation == Switch OPEN
— M\/.system A Capacitor Bank
— SWCIOSED @ Voteds Reiue Determine Capacitor Bank Status

1
2 -
- 0TIIIIIIIIIIIIIIIIIIII___l
_2 -
0 3 6 9 12 15 18 21 0
tempo (h)
Estimate Control Settings — Average Values
Resolution (15 min) Resolution (60 min)
Setting Original Days Days
1 3 7 1 3 7
Vsup (V) 11,775 11,787 11,791 11,790 11,795 11,787 11,792
Vine (V) 11,625 11,609 11,617 11,612 11,596 11,606 11,607
Vier (V) 11,700 11,698 11,704 11,701 11,695 11,697 11,700
B (V) 15 1.77 1.73 1.77 1.98 1.8 1.84
Qon (kvar) 1,200 [1,196<Q<1,208|1,202<Q<1,189|1,202<Q<1,187| 869<Q<1,131 | 869<Q<1,117 [1,144<Q<1,126
Qorr (kvar) 800 801 805 807 819 832 866

The control settings and operation period are properly estimated

Source: V. C. Cunha, Integration of new Methods into Distribution Management Systems in the Presence of
Distributed Energy Resources and Smart Meters, Ph.D. Dissertation, UNICAMP, 2022



Non-Technical Losses: detection and location (Idea 1)

v’ Issue: Illegal load connection (NTL) tampers active and reactive power measurements, but no voltage

measurement. Power flows, voltage does not

v" Idea 1: By using P, Q and V measured by the smart meter in each customer, one can estimate the V.

The lowest estimated value indicates potential NTL

lllegal load connection
P & Q: tampered data
V: correct data

>

A

PCCi :Vmi + ZSi : Ii

Vv

121

119
S 1
Q 118

117

116

115
0 2 4 6 8 10 12 14 16 18 20 22

Time (hours)

P, Qz, Vv, "

Source: F. C. L. Trindade, J. C., M. Vieira, W. Freitas, W. Xu: proof of concept applied to BC hydro (smart meter database: 2013)

Volt drop method:

Vpccis estimated by using data
from each customer smart meter
connected to the same MV/LV
transformer. Estimated values
different (lower) indicated NTL



Non-Technical Losses: detection and location (Idea 2)

Issue: Energy theft by the connection of
irregular loads

Idea 2: Use data from customer smart meters to
run a state estimation process, as active and
reactive power measurements are tampered,
but voltage is not

Method can typically detect and locate NTL as
small as 2 kW for LV illegal loads and 23 kW for
MV illegal loads

Customer
V. \, |« Irregular Load
7 NTL
1 F
Network L | —>  Load
Y12=012-jb12 Smart Meter > DG
P2, Q2, V2

V&t Measurement
Residual
My = Vkmea _ Vkest

Meter Error 4

— mea real
evk = V™ — Vy
Vkmea Vkreal

Pkmea 0
/N Measurement
P&t Residual
Ipk = Pkmea _ Pkest
Gross Error NTL p, real
epx = Pkmea _ Pkreal k

Source: L. Raggi, F. Trindade, V. C. Cunha, W. Freitas, “Non-technical loss identification by using data analytics and customer smart meters,” IEEE Transactions on Power Delivery, v. 35, p. 2700-

2710, 2020 - © IEEE 2020



Non-Technical Losses: detection and location (Idea 2)

Case study:
v' 13.8-kV feeder (real): 55 LV systems + 64 MV customers — 1,682 buses.

v" LV-NTL: magnitude from 1 kW to 10 kW (~1,000 occurrences)
v MV-NTL: magnitude from 20 kW to 200 kW (56 occurrences)

LV-NTL MV-NTL

o

S a9 9 9 som o oon
248 196 196 23.9 1 1 a) b) c) d 500 9o
86.9 71.8 70.7 81.5 1 1 0 0 0 0 0 0
97.3 88.3 85.1 92.8 1 2 0 0 0 0 0 0
99.3 95.3 91.0 96.9 1 2 396 396 396 396 1 1
99.3 97.7 94.6 97.8 2 3 96.9 96.9 96.9 96.9 1 1
G 995 98.6 95.9 98.8 2 3 100 100 100 100 1 1
99.5 98.9 96.6 98.9 2 3 100 100 100 100 1 2
“ 99.5 99.1 97.0 99.3 2 3 a) NTL is detected; b) NTL bus is among the suspect buses; c) NTL bus is indicated with the
“ 99.5 99.1 97.7 99.3 2 4 maximum Erry,,(%) value; d) NTL bus or a first neighbor bus is indicated with the maximum
99.5 99.1 08.4 99.5 2 4 Erryr (%) value; e) Number of buses indicated as suspects of NTL.

a) NTL is detected; b) NTL bus is among the suspect buses; c) NTL bus is indicated with the
maximum Erry;, (%) value; d) NTL bus or a first neighbor bus is indicated with the maximum
Erryr, (%) value; e) Number of buses indicated as suspects of NTL.

Source: L. Raggi, F. Trindade, V. C. Cunha, W. Freitas, “Non-technical loss identification by using data analytics and customer smart meters,” IEEE Transactions on Power Delivery, v. 35, p. 2700-
2710, 2020 - © IEEE 2020



Fault location: distribution systems (idea 1)

ldea 1:

v’ Collect V&I at feeder terminal

v' Calculate downstream Z using V&l
v Estimate fault distance using Z

v" PQ monitor is used to collect data

dz,

PQ

monitor

GIS

VQ

SCADA

v

»
»

Fault
Location
System

Basic idea of impedance-based fault location technique

Examples of Algorithms for Single-Phase Fault Location

e Positive-Sequence and Zero-Sequence
— Loop Impedance (Z))
— Loop Resistance (R))
— Loop Reactance (X))

Positive-Sequence Algorithms
— Resistance-to-Fault (RTF)
— Impedance-to-Fault (ZTF)

Reactance-to-Fault (XTF)

RMS Voltage and RMS Current Only
— Absolute Impedance (Z)



Fault location: distribution systems (idea 1)
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Source: D. D. Sabin, and A. R. Dettloff, “Overview of an Automatic Subtransmission Fault Location System at DTE Energy,” IEEE/PES General Meeting 2012 - © 2012 IEEE

Single-line-to-ground fault
measured by the PQ
monitor - © 2012 |IEEE

Example Street View
Map of estimated (green
lightning) and actual
(red lightning) fault
location - © 2012 IEEE



Fault location: distribution systems (idea 2)

Issue:

v" How to avoid identification of multiple
locations?

ldea 2:

Use information from customer smart meters:

v" Outage mapping (might not be sufficient)

v Voltage magnitude (concept of low voltage
zone)

Functionalities:
v' Outage mapping: simpler and lower accuracy

v Voltage measurement: more complex and higher
accuracy

Voltage magnitude

<
FL, monitor d

Fault Igcation
- Outage notification setting

Rf=OQ

Feeder length

Source: F. C. L. Trindade, W. Freitas, “Low voltage zones to support fault location in distribution systems with smart meters” |IEEE Transactions on Smart Grid, v. 8, p. 2765-2774, 2017 - © 2017

IEEE



Fault location: distribution systems (idea 2)

Results of fault location for a single-phase fault with R, = 0.5 Q.

/"y N Estimated Voltage
Aty \ fault location | magnitude (pu)
: 1 0.171
0.236
0.365
0.365
0.363
0.365
0.365

~NO ORI WN

Source: F. C. L. Trindade, W. Freitas, “Low voltage zones to support fault location in distribution systems with smart meters” IEEE Transactions on Smart Grid, v. 8, p. 2765-2774, 2017 - © 2017
IEEE



Load modeling: what are to be modeled?

A V V i
" Step voltage change
AV T
t Why is it important to correctly model the
P&Q = steady-state load responses?
oo — AP, | v/ Determination of technical and non-
s |
Vi T R o technical losses
N Timetorecover .. ... .. ¥ O AQ
— s . .
AQ l v"  Allocation of capacitor banks and voltage
/TQ , t regulators

v Decision-making of strategies for voltage

Load parameters for loads with the above responses: regulation and var compensation
*  Transient load responses: 4P, and 4Q,

AN

Ampacity calculations
*  Steady-state load responses: AP_and AQ,

AN

*  Time to recover: z,and 7, Expansion studies

Source: W. Freitas and L. C. P. da Silva, Distribution System Load Modeling Based on Detection of Natural Voltage Disturbances, IEEE/PES General Meeting, 2012 - © 2012 IEEE



Load modeling: parameter estimation

Substation Bus

Supply System m—’

Feederl

Distribution network

Feeder 2

/N R Feeder 3
7 >
Upstream disturbances -1

AN >
Tond TCTP SMVMV =
oa o Upstream ILV
=1 p MV/LV
Results +— _ d disturbances o
monitor
TC/TP
. Load |eapi—
Commercial
monitor T T T ?
Load l Rl R2 R3 R4

Results

* Which model should be used?
* Which signals should be monitored?

* How to automatically detect (select) a voltage disturbance useful
for load monitoring? (Upstream versus downstream disturbance)

* Which level of voltage variation should be detected?
* How large should the measurement window be?

* Is the number of events enough to be representative?

Source: W. Freitas and L. C. P. da Silva, Distribution System Load Modeling Based on Detection of Natural Voltage Disturbances, IEEE/PES General Meeting, 2012 - © 2012 IEEE
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fy—500ms Iy to +1000ms

V[kV]

P [kW]
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8.08
R.07
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8.02
8.01
63.4
63.3
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63.1
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62.9

19.22
19.20
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19.16
19.14
19.12
19.10
19.08
19.06

£y —300ms

I ty +1000ms

Case study: In a pilot project, measurements were carried out for 3

and 1/2 days (82 consecutive hours)



Customer appliance monitoring

Issue: How to use V&I current from a single sensor to monitor individual home appliances
consumption?

Bill Breakdown

This page Shows the Slaciric costaf your ragisiered spollaNcas S 830h month

m
-
3
E E
2
D
ﬁ

Month: | September 2011 [ |
use
Microwave 2.2 kWh 30.22 $0.00 1.0% el
Range(Oven)  Z1.4 KWh 5214 0.01
Kettle 1.0 KWh 5010 50.00 0.5% w
Dishwasher 7.3 kWh $0.73 50,00 3%
Washer 4.2 KWh $0.42 50.00 19%
3_ Inte rnet Phnyer 112KV 5119 £0.01 5.4% m
Fridge 10.5 KWh 5106 NiA 48%
Freezer 5.3 KWh $0.59 NUA 2.7%
(Se rve r) Air Conditioner  18.8 KWh 5188 NIA 78%
Furnace 18.3 KWh 51.89 $0.01 86% “
HotWater  ga7kwn 35.38 50.04 21.6% —
Ski Boot Dryer 5.8 KWh 5059 S0.01 45% -
Treadmill 13,2 KWh $1.33 $0.01 6.0% -
O Gtherd 4.8 KWh 5048 NUA 2.2%
Other2 5.3 KWh 5059 NIA 27%
Other3 4.7 KWh 5047 NUA 2.1%
Rest of Energy  12.1 KWh 5121 NiA 55%

4. Display/Interface

| Electrical
Panel

2. Receiver

Source: M. Dong, P. C. M. Meira, W. Xu, W. Freitas, “An event window-based load monitoring technique for smart meters", IEEE Transactions on Smart Grid, v. 3, p. 787-796, 2012 - © 2012 IEEE



Customer appliance monitoring

ldea: Develop an event-window-based approach using unique characteristics (signatures) of
typical appliances such as:

. ignal
* edge signatures veter Signa
* Ssequence Signatures Aopliance
* trend signatures signare st e by
* time/duration signatures i*Phasesignature l
) phase Slgnatu res Appliance ~ Select * Duration signature
° powe rs |g natures candidates window candidates
* harmonic signatures i s Edge signaure
Active Power Evaluate similarity * Sequence signature
L3 | between window and * Trend signature
10000 applianceiandidates * Time signature
8000
% 6000 Make decision
2
& 4000
2000 LLLMW
b b s o gl o D PR Lo I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Hours(h)

Source: M. Dong, P. C. M. Meira, W. Xu, W. Freitas, “An event window-based load monitoring technique for smart meters", IEEE Transactions on Smart Grid, v. 3, p. 787-796, 2012 - © 2012 IEEE



Customer appliance monitoring

Appliance characteristics (signatures)
Characteristic 1: Power levels

« A microwave oven draws about 1000W when turned on
« A fridges draws about 100W when turned on

Characteristic 2: Current waveforms

4
RAY £ p
>\ DesktopPC m {
2 7
<1\ \
L e —
5,0 100\ , 200 300 0 500
© ! — —PC1
2 ! ;’ )/ ——pC3
3 (v} \Vj pC2
4
Time steo
6
47 LCD TV
< 2
= I A A\ —
0 T =T T 7 T
e N -7
5 o 0 200 300 400,/ 500
O 2 — = TV1
- —TV2
TV3
-6

Time step
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Frldge
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500 -

400

300~

200~

100 ~ oS

0 : r r r r r r :
4300 4400 4500 4600 4700 4800 4900 5000 5100 5200

Source: M. Dong, P. C. M. Meira, W. Xu, W. Freitas, “An event window-based load monitoring technique for smart meters", IEEE Transactions on Smart Grid, v. 3, p. 787-796,

2012 - © 2012 IEEE
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Characterlstlc 3: Turn on transients and operating cycles

Oven/Stove

r
1650

r
1700

r r r r r
1750 1800 1850 1900 1950 2000

Characteristic 4:

Meter side

77777777777

“Electrical location”

Phase-A

®
Phase-B IZ4OV 120V

Neutral I

Kitchen
Light

T

Bedroom
Light

| Stove I

Characteristic 5: Duration and time of use

Load name Min length Max length
Fridge(cycle) >10 mins <40 mins
Freezer(cycle) >10 mins <40 mins
Furnace(cycle) >5 mins <30 mins

Stove >3 mins <45 mins

Kettle >3 mins <15mins

Washer >20 mins <90 mins

Dryer > 20 mins <75 mins
Bedroom light >0 min <5 hrs
Living room light >0 min <8.5 hrs
TV >0 min <10 hrs

Time of Use Curves for Cooking Activity
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Wind generation: resonances

Generators System compensation
DFIG (Type llI) Series compensation
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Shunt compensation
Full-converter (Type 1V) /!
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Issue: interactions among the wind farms and the system capacitances and inductances can produce sub-
synchronous resonances (series compensation) and harmonic resonances (shunt compensation), which can
be weakly damped or unstable (high frequency)




Wind generation: resonances — real cases

v

v

AN

Texas, USA: installed capacity: 200 MW (345 kV, Type I
generators)

Unstable resonance was caused by a short-circuit,
followed by a transmission line being tripped close to
the wind park

Sub-synchronous currents reached 4.0 puin1s
Sub-synchronous voltages reached 2.0 puin 3 s

The event damaged the crowbar circuit of several wind
park generators, and the series capacitor of a
transmission line close to the wind park
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Source: D. Kidd, P. Hassink, “Transmission operator perspective of sub-synchronous interaction,” IEEE PES T&D,
2012 - © 2012 IEEE

v
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Source: X. Xie et. al., “Characteristic Analysis of Subsynchronous Resonance in Practical Wind Farms Connected to Series-

Heibei, China: installed capacity: 3.4 GW (220 kV, 82.5%
- Type lll, 15.4% - Type IV and 1.8% Type Il generators)

58 events of unstable sub-synchronous resonance were
detected from Dec. 2012 to Dec. 2013

Event (Mar. 19t, 2013): power generation was 219.5
MW. 30 s after the start, the oscillation magnitude
reached 25% of the average power generation. A total
of 66% of the generation was lost during the event
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Compensated Transmissions,” IEEE Trans. on Energy Conversion, 2017 - © 2017 |IEEE



Wind generation: protective methods for mitigation (real-time)
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Issue: (a)
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SSR events in series compensated transmission lines 1% peak: I,
connected close to DFIG-based wind farms have f,=1/(44t)
been reported

Increasing development

_50 | | | |
1 1.2 1.4 1.6 1.8 2

SSR currents can become significant in less than 1 time(s)

second, causing equipment damages With 1t and 2"¢ peaks, one can obtain
the damping ratio a

Early detection of SSR characteristics is critical to
avoid equipment damages and implement

L . Challenge: obtain SSR current, with
mitigation actions

unknow frequency, with high speed and
accuracy

Source: B. Gao, R. Torquato, W. Xu, W. Freitas, "Waveform-based method for fast and accurate identification of subsynchronous resonance events," IEEE Transactions on Power Systems, v. 34, p.
3626-3636, 2019 - © 2019 IEEE




Wind generation: protective methods for mitigation (real-time)

Data Analysis

7 |dea: voltage and current waveforms at the line terminals can

be collected to extract the sub-synchronous current by using
the line as a natural analog filter

S ot
= —m—r— & SSR characteristics can be obtained in ~1 SSR cycle
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Incipient fault detection (fault anticipation)

Issue: Several faults in distribution systems are preceded
by incipient faults, especially if the faults are related to

equipment failures:

 overgrown trees under power lines
* insulation failure

e failure of transformer tap

Detection of incipient faults allows the adoption of
predictive actions, avoiding the occurrence of a
permanent fault

Characteristics of incipient faults:

* Small magnitude not enough to trigger relays
* Short duration not enough to trigger relays

* Distorted waveforms

|Idea: detect abnormal voltage and current waveforms
(PQ monitors)

Traditional .
Thinking Normal operation Outage
Time

* Detect fault
* Protection acts
* Dispatch crew members to solve problem

N el operti
“
LY
Pre-Failure period

Time

(hours, days, weeks)

— _J/
~

Pre-Failure period Time
/ (hours, days, weeks)

Anticipation P

\ * Detect incipient fault
« Dispatch crew members to solve problem

Concept of incipient fault detection (or fault anticipation)

Adapted from: J. A. Wischkaemper, C. L. Benner, B. D. Russell, and K. Manivannan,
“Application of Waveform Analytics for Improved Situational Awareness of Electric
Distribution Feeders,” IEEE Trans. on Smart Grid, vol. 6, pp. 2041-2049, 2015



Incipient fault detection (fault anticipation)

Real case 1: Fault-induced conductor slap (FICS): occurs when magnetic forces from an initial fault cause
movement in upstream conductors sufficient to cause contacts, resulting in a second, higher magnitude

fault closer to the substation
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RMS current waveforms for FICS sequence - © 2015 IEEE
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Span with multiple FICS events - © 2015 IEEE

Source: J. A. Wischkaemper, C. L. Benner, B. Don Russell, and K. Manivannan, “Application of waveform analytics for improved situational awareness of electric distribution feeders” IEEE
Transactions on Smart Grid, vol. 6, pp. 2041-2774, 2049 - © 2015 IEEE



More information: Electric signatures of power equipment failure (PES-TR73)

IEEE Power & Energy Society

December 2019

@ES $ IEEE
Electric Signatures of
Power Equipment Failures

PREPARED BY THE

Transmission & Distribution Committee

Power Quality Subcommittee

Working Group on Power Quality Data Analytics

https://resourcecenter.ieee-pes.org/technical-publications/technical-

TECHNICAL REPORT

PES-TR73

1. Failure signatures of equipment

2. Review of waveform abnormality detection methods

Underground cables
Overhead lines
Transformers & tap changers
Switches

Capacitors

Lightning and surge arresters

Potential transformers

3. Discussions on how to move forward

reports/PES TP_TR73 TD 122019.html

IEEE PES T&D Committee Award for Outstanding Technical Report: “For Advancing the Power Quality Data
Analytics Domain by Demonstrating Techniques for Prediction and Analysis of Electric Power Equipment

Failure” — 2020


https://resourcecenter.ieee-pes.org/technical-publications/technical-reports/PES_TP_TR73_TD_122019.html

Comments

v Due to uncertainties, variabilities and unpredictability of demand and generation,
economic and environmental concerns, the electrical energy systems of the future will be
planned and operated based more and more on risk-based methods, stochastic

approaches and active (predictive) philosophies
v’ Data analytics will be essential for the future of the electrical energy systems

v' Smart meters (and other sensors) are one of the core technologies to promote this

paradigm change (more killer applications can make this solution a business case)

v' Models and methods must be developed considering the availability and quality of data

worse than make a decision with no data, It IS to make a decision with bad data




Thank you

Walmir Freitas

http://www.dsee.fee.unicamp.br/~walmir



